Evidence that long-term hyperexcitability of the sensory neuron soma induced by nerve injury in Aplysia is adaptive.

نویسندگان

  • Xavier Gasull
  • Xiaogang Liao
  • Michael F Dulin
  • Cynthia Phelps
  • Edgar T Walters
چکیده

Peripheral axotomy induces long-term hyperexcitability (LTH) of centrally located sensory neuron (SN) somata in diverse species. In mammals this LTH can promote spontaneous activity of pain-related SNs, and such activity may contribute to neuropathic pain and hyperalgesia. However, few axotomized SN somata begin to fire spontaneously in any species, and why so many SNs display soma LTH after axotomy remains a mystery. Is soma LTH a side effect of injury with pathological but no adaptive consequences, or was this response selected during evolution for particular functions? A hypothesis for one function of soma LTH in nociceptive SNs in Aplysia californica is proposed: after peripheral injury that produces partial axotomy of some SNs, compensation for sensory deficits and protective sensitization are achieved by facilitating afterdischarge near the soma, which amplifies sensory input from injured peripheral fields. Four predictions of this hypothesis were confirmed in SNs that innervate the tail. First, LTH of SN somata was induced by a relatively natural axotomizing event-a small cut across part of the tail in the absence of anesthesia. Second, soma LTH was selectively expressed in SNs having axons in cut or crushed nerves rather than nearby, uninjured nerves. Third, after several weeks soma LTH began to reverse when functional recovery of the interrupted afferent pathway was shown by reestablishment of a centrally mediated siphon reflex. Fourth, axotomized SNs developed central afterdischarge that amplified sensory discharge coming from the periphery, and the after-depolarization underlying this afterdischarge was enhanced by previous axotomy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Retrograde transport of plasticity signals in Aplysia sensory neurons following axonal injury.

Following injury to their peripheral branches, mechanosensory neurons in Aplysia display long-term plasticity that is expressed as soma hyperexcitability, synaptic facilitation, and neurite outgrowth. To investigate the nature of signals that convey information about distant axonal injury, we have investigated the development of injury-induced soma hyperexcitability in two in vitro preparations...

متن کامل

Limited contributions of serotonin to long-term hyperexcitability of Aplysia sensory neurons.

Serotonin (5-HT) has provided a useful tool to study plasticity of nociceptive sensory neurons in Aplysia. Because noxious stimulation causes release of 5-HT and long-term hyperexcitability (LTH) of sensory neuron somata and because 5-HT treatment can induce long-term synaptic facilitation of sensory neuron synapses, a plausible hypothesis is that 5-HT also induces LTH of the sensory neuron som...

متن کامل

Activation of protein kinase A contributes to the expression but not the induction of long-term hyperexcitability caused by axotomy of Aplysia sensory neurons.

Nociceptive sensory neurons (SNs) in Aplysia provide useful models to study both memory and adaptive responses to nerve injury. Induction of long-term memory in many species, including Aplysia, is thought to depend on activation of cAMP-dependent protein kinase (PKA). Because Aplysia SNs display similar alterations in models of memory and after nerve injury, a plausible hypothesis is that axoto...

متن کامل

Comparative analysis of hyperexcitability and synaptic facilitation induced by nerve injury in two populations of mechanosensory neurones of Aplysia californica.

Long-term effects of nerve injury on electrophysiological properties were compared in two populations of mechanosensory neurones in Aplysia californica: the J and K clusters in the cerebral ganglia and the VC clusters in the pleural ganglia. Following crush of cerebral nerves containing their axons, the cerebral J/K sensory neurones showed long-term changes that were quite similar to alteration...

متن کامل

A neuronal isoform of protein kinase G couples mitogen-activated protein kinase nuclear import to axotomy-induced long-term hyperexcitability in Aplysia sensory neurons.

The induction of a long-term hyperexcitability (LTH) in vertebrate nociceptive sensory neurons (SNs) after nerve injury is an important contributor to neuropathic pain in humans, but the signaling cascades that induce this LTH have not been identified. In particular, it is not known how injuring an axon far from the cell soma elicits changes in gene expression in the nucleus that underlie LTH. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 94 3  شماره 

صفحات  -

تاریخ انتشار 2005